Asymptotic Normality of Wavelet Estimators of the Memory Parameter for Linear Processes
نویسندگان
چکیده
We consider linear processes, not necessarily Gaussian, with long, short or negative memory. The memory parameter is estimated semi-parametrically using wavelets from a sample X1, . . . , Xn of the process. We treat both the log-regression wavelet estimator and the wavelet Whittle estimator. We show that these estimators are asymptotically normal as the sample size n → ∞ and we obtain an explicit expression for the limit variance. These results are derived from a general result on the asymptotic normality of the empirical scalogram for linear processes, conveniently centered and normalized. The scalogram is an array of quadratic forms of the observed sample, computed from the wavelet coefficients of this sample. In contrast with quadratic forms computed on the Fourier coefficients such as the periodogram, the scalogram involves correlations which do not vanish as the sample size n → ∞.
منابع مشابه
Fractional Poisson Process
For almost two centuries, Poisson process with memoryless property of corresponding exponential distribution served as the simplest, and yet one of the most important stochastic models. On the other hand, there are many processes that exhibit long memory (e.g., network traffic and other complex systems). It would be useful if one could generalize the standard Poisson process to include these p...
متن کاملRidge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models
In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...
متن کاملAsymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
متن کاملStochastic Restricted Two-Parameter Estimator in Linear Mixed Measurement Error Models
In this study, the stochastic restricted and unrestricted two-parameter estimators of fixed and random effects are investigated in the linear mixed measurement error models. For this purpose, the asymptotic properties and then the comparisons under the criterion of mean squared error matrix (MSEM) are derived. Furthermore, the proposed methods are used for estimating the biasing parameters. Fin...
متن کاملCentral Limit Theorems for Arrays of Decimated Linear Processes
Linear processes are defined as a discrete-time convolution between a kernel and an infinite sequence of i.i.d. random variables. We modify this convolution by introducing decimation, that is, by stretching time accordingly. We then establish central limit theorems for arrays of squares of such decimated processes. These theorems are used to obtain the asymptotic behavior of estimators of the s...
متن کامل